Theorie der Funktionen einer reellen Veränderlichen

Theorie der Funktionen einer reellen Veränderlichen
теория функций вещественной переменной

Немецко-русский математический словарь. 2013.

Игры ⚽ Нужно решить контрольную?

Смотреть что такое "Theorie der Funktionen einer reellen Veränderlichen" в других словарях:

  • Konvexe und konkave Funktionen — Konvexe Funktion In der Analysis heißt eine Funktion f von einem Intervall I (oder allgemeiner einer konvexen Teilmenge C eines reellen Vektorraums) nach …   Deutsch Wikipedia

  • Funktionen — In der Mathematik ist eine Funktion oder Abbildung eine Beziehung zwischen zwei Mengen, die jedem Element der einen Menge (Eingangsgröße, Funktionsargument, unabhängige Variable, x Wert) ein Element der anderen Menge (Ausgangsgröße, Funktionswert …   Deutsch Wikipedia

  • Satz von Egorov — Der Satz von Jegorow[1],[2] (nach D. F. Jegorow[3]) ist ein Satz aus der Maßtheorie, der den Zusammenhang zwischen fast überall punktweise Konvergenz und fast gleichmäßige Konvergenz zeigt. Satz Sei Kn der n dimensionale komplexe (oder reelle)… …   Deutsch Wikipedia

  • Satz von Jegorow — Der Satz von Jegorow[1],[2] (nach D. F. Jegorow[3]) ist ein Satz aus der Maßtheorie, der den Zusammenhang zwischen fast überall punktweise Konvergenz und fast gleichmäßige Konvergenz zeigt. Satz Sei Kn der n dimensionale komplexe (oder reelle)… …   Deutsch Wikipedia

  • Satz von Young (Mengenlehre) — Der Satz von Young (nach William Henry Young) ist eine Aussage aus der deskriptiven Mengenlehre und der Theorie der Funktionen einer reellen Veränderlichen, die die Menge der Unstetigkeitsstellen einer Funktionen beschreibt. Mit Hilfe des Satzes… …   Deutsch Wikipedia

  • Enzyklopädie der mathematischen Wissenschaften — Die Enzyklopädie der Mathematischen Wissenschaften mit Einschluß ihrer Anwendungen war ein Enzyklopädieprojekt der mathematischen Wissenschaften (im weitesten Sinn) samt Anwendungen, das beim B.G. Teubner Verlag in Leipzig 1904 bis 1935 erschien …   Deutsch Wikipedia

  • Limeszahl — Beim Zählen benutzt man Ordinalzahlen (auch Ordnungszahlen genannt), um die Position eines Elements in einer Folge anzugeben: „Erstes, zweites, drittes, … Element“. Sprachlich benutzt man dazu bestimmte Zahlwörter. Auf diese Weise ordnet man… …   Deutsch Wikipedia

  • Ordinalzahlen — Beim Zählen benutzt man Ordinalzahlen (auch Ordnungszahlen genannt), um die Position eines Elements in einer Folge anzugeben: „Erstes, zweites, drittes, … Element“. Sprachlich benutzt man dazu bestimmte Zahlwörter. Auf diese Weise ordnet man… …   Deutsch Wikipedia

  • Ordnungsisomorphie — Beim Zählen benutzt man Ordinalzahlen (auch Ordnungszahlen genannt), um die Position eines Elements in einer Folge anzugeben: „Erstes, zweites, drittes, … Element“. Sprachlich benutzt man dazu bestimmte Zahlwörter. Auf diese Weise ordnet man… …   Deutsch Wikipedia

  • Ordnungsisomorphismus — Beim Zählen benutzt man Ordinalzahlen (auch Ordnungszahlen genannt), um die Position eines Elements in einer Folge anzugeben: „Erstes, zweites, drittes, … Element“. Sprachlich benutzt man dazu bestimmte Zahlwörter. Auf diese Weise ordnet man… …   Deutsch Wikipedia

  • Bairesche Klasse — Die baireschen Klassen stellen eine partielle Klassifizierung der reellen Funktionen dar. Sie ist zum ersten Mal von René Louis Baire in seiner Dissertation vom Jahre 1898 aufgestellt worden und als Antwort auf die zum ersten Mal von Dini (1878)… …   Deutsch Wikipedia


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»